

Università degli Studi di Napoli Federico II Scuola Politecnica e delle Scienze di base

Ordine degli Ingegneri della Provincia di Napoli

Seminario di preparazione all'Esame di Stato per l'Abilitazione all'esercizio della professione - Settore Civile Ambientale

Criteri progettuali degli edifici

10.11.2014 Aula Scipione Bobbio – Piazzale Tecchio, 80 Napoli

Ing. Salvatore Simonetti

Phd studente Ingegneria delle Costruzioni, Università degli Studi di Napoli Federico II

Per **EDIFICIO** si intende una costruzione edilizia realizzata dall'uomo e destinata ad accogliere al suo interno persone e attività a queste connesse

Si usa il termine **tipo edilizio** e non **tipo architettonico** in quanto la definizione tipologica si forma astraendo dagli aspetti individualmente architettonici dei singoli prodotti, concentrandosi piuttosto sul confronto dei caratteri comuni a tutti.

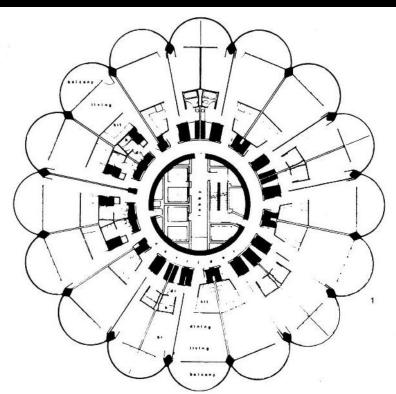
L'uomo eschimese vede e vive solo abitazioni emisferiche fatte di una calotta di neve ghiacciata, nessuna identica all'altra ma tutte simili tra loro;

egli matura cosi quella idea di casa e il suo concetto tipologico della casa corrisponde all'igloo che divine il suo tipo edilizio

Per **EDIFICIO** si intende una costruzione edilizia realizzata dall'uomo e destinata ad accogliere al suo interno persone e attività a queste connesse

I tipi edilizi

1


STRUTTURE A TORRE


2

STRUTTURE DUPLEX

Progetto:Bertrand Goldberg
Associates,
Chicago

Sito: Chicago, Marina City

Data di costruzione: 1962

Tipo di edificio:

Due torri residenziali 65 piani di cui 40 piani con abitazioni

I primi 18 piani sono dei parcheggi a spirale che possono ospitare fino a 450 automobili

Trovano, inoltre, posto nella struttura
-un teatro con 1750 posti
-un auditorium con 700 poltrone
--una banca
-Un ristorante
--uffici
--450 appartamenti a forma di mezza
luna

Tipo di edificio:

Due torri residenziali 65 piani di cui 40 piani con abitazioni

I primi 18 piani sono dei parcheggi a spirale che possono ospitare fino a 450 automobili

Trovano, inoltre, posto nella struttura
-un teatro con 1750 posti
-un auditorium con 700 poltrone
--una banca
--Un ristorante
--uffici
--450 appartamenti a forma di mezza
luna

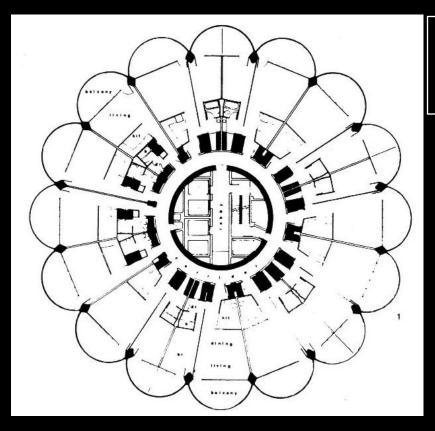
Tipo di edificio:

Due torri residenziali 65 piani di cui 40 piani con abitazioni

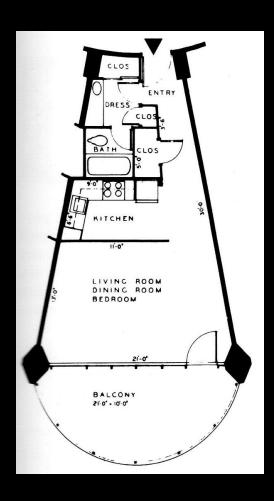
I primi 18 piani sono dei parcheggi a spirale che possono ospitare fino a 450 automobili

Trovano, inoltre, posto nella struttura
-un teatro con 1750 posti
-un auditorium con 700 poltrone
--una banca
-Un ristorante
--uffici

--450 appartamenti a forma di mezza luna

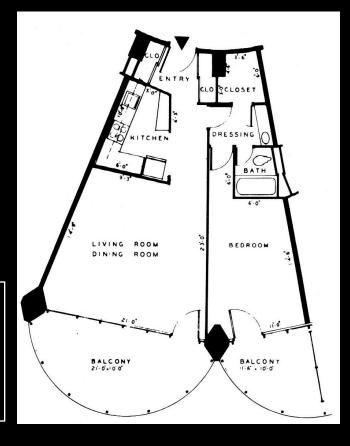


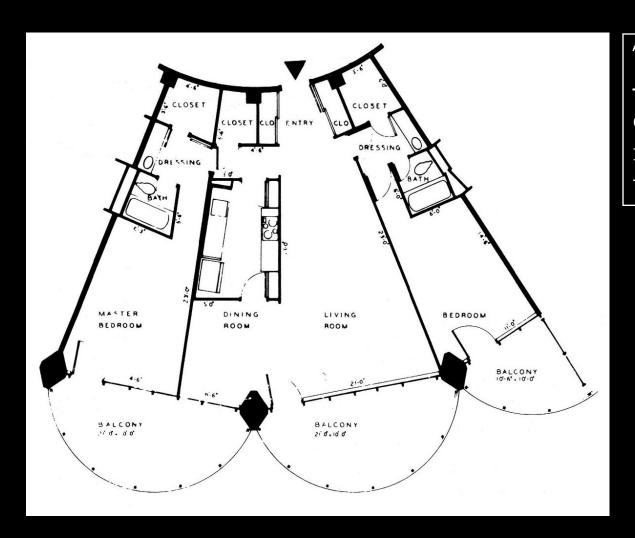
Tipo di edificio:


Due torri residenziali 65 piani di cui 40 piani con abitazioni

I primi 18 piani sono dei parcheggi a spirale che possono ospitare fino a 450 automobili

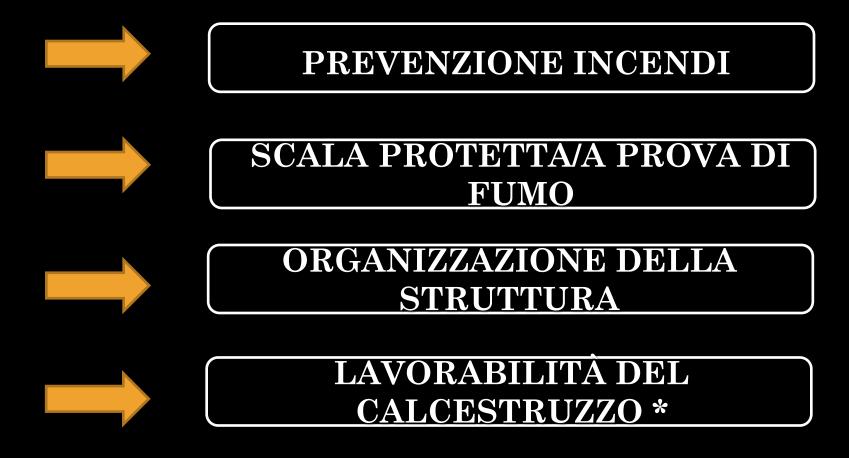
Trovano, inoltre, posto nella struttura
-un teatro con 1750 posti
-un auditorium con 700 poltrone
--una banca
-Un ristorante
--uffici
--450 appartamenti a forma di mezza
luna


L'organizzazione dell'edificio è caratterizzata da grande flessibilità planimetrica



L'organizzazione dell'edificio è caratterizzata da grande flessibilità planimetrica

Studio (40 mq) – modulo base


Bilocale (70 mq) nasce dall'unione di un modulo e di mezzo modulo

Trilocale (100 mq)
– nasce
dall'unione di due
moduli interi e di
un mezzo modulo

PROBLEMATICHE SPECIFICHE DELLE STRUTTURE A TORRE

^{*} vedi: F. Fascia, R. Iovino – La struttura in c.a. per l'architettura. Tecnica e tecnologia, Aracne Editrice, 2008

INTERVENTI ATTIVI

» insieme degli interventi messi in atto dopo lo scoppio dell'incendio

INTERVENTI PASSIVI

» insieme degli interventi messi in atto prima dello scoppio dell'incendio

INTERVENTI PASSIVI

Resistenza al fuoco predefinita REI [min]

R (resistenza) attitudine a conservare la capacità

di portare i carichi di esercizio per

un tempo predefinito

E (tenuta) attitudine ad impedire il passaggio

di fumo e fiamme per un tempo

predefinito

I (isolamento) attitudine a limitare la

trasmissione del calore per un

tempo predefinito

Criteri per determinare la REI

Regola tecnica di prevenzione incendi [RTPI]

Edilizia scolastica

strutture

$$\geq$$
 R 60 per H \leq 24 m
 \geq R 90 per H $>$ 24 m

elementi separazione ≥ REI 60 per H ≤ 24 m ≥ REI 90 per H > 24 m

Reazione al fuoco predefinita

"Grado di partecipazione del materiale all'incendio"

Il Decreto del Ministero dell'Interno 15/03/2005 classifica i materiali da costruzione secondo sei classi di partecipazione alla combustione:

0, 1, 2, 3, 4, 5

I materiali di classe 0 sono non combustibili I materiali di classe 5 partecipano in grado massimo alla combustione

Reazione al fuoco predefinita

criteri di proporzionamento:

regola tecnica di prevenzione incendi

Edilizia scolastica

Atrii, corridoi, disimpegni, scale, rampe	Classe 1: 50 % sup. totale Classe 0: restante parte
Altri ambienti: pavimenti	Classe 2
: rivestimenti	Classe 1 (Classe 2 per impianti di spegnimento automatico)
Tendaggi	Classe 0/Classe 1

<u>Compartimentazione</u> "Parte di edificio definita al contorno da elementi costruttivi con REI predefinita"

criteri di proporzionamento: [RTPI]

Edilizia scolastica

Altezza antincendio	Max superficie compartimento [m²]
Fino a 12 m	6.000
da 12 m a 24 m	6.000
da oltre 24 m a 32 m	4.000
da oltre 32 m a 54 m	2.000

Sistema di vie di fuga

"Insieme dei percorsi orizzontali e verticali idonei a garantire il collegamento con il luogo sicuro in condizioni di sicurezza" criteri di proporzionamento: $n = A / C_d$

nella quale: n = larghezza del sistema espresso in

moduli (1 modulo = 60 cm)

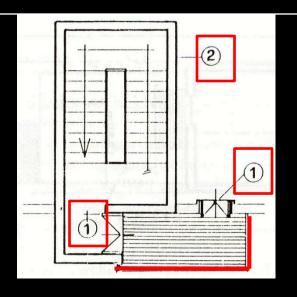
A = Affollamento

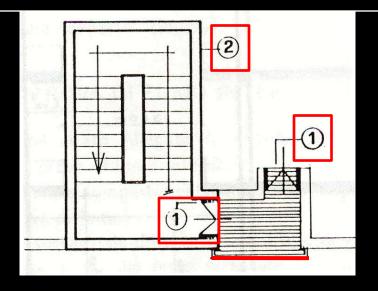
C_d = Capacità di deflusso: numero persone che possono percorrere un modulo unitario in condizioni di sicurezza

C_d si desume dalla [RTPI]

Edilizia scolastica $C_d \le 60$ per ogni piano

PROBLEMATICHE SPECIFICHE DELLE STRUTTURE A TORRE

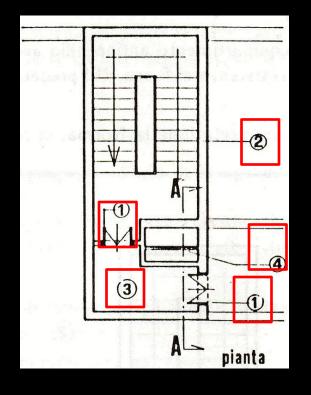


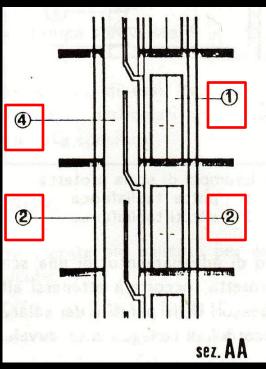

^{*} vedi: F. Fascia, R. Iovino – La struttura in c.a. per l'architettura. Tecnica e tecnologia, Aracne Editrice, 2008

SCALA PROTETTA/A PROVA DI FUMO

Scala a prova di fumo esterna

Scala in vano costituente compartimento antincendio (2) con accesso per ogni piano - mediante porte di resistenza al fuoco con RE predeterminata e dotate di congegno di autochiusura (1) - da spazio scoperto o da disimpegno aperto per almeno un lato su spazio scoperto dotato di parapetto a giorno.

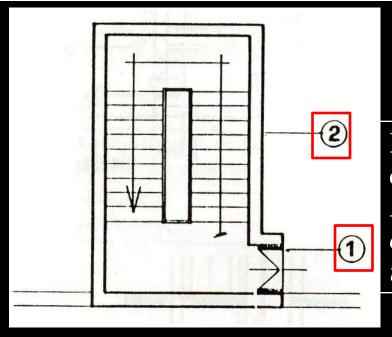




SCALA PROTETTA/A PROVA DI FUMO

Scala a prova di fumo interna

Scala in vano costituente compartimento antincendio avente accesso, per ogni piano, da filtro a prova di fumo.



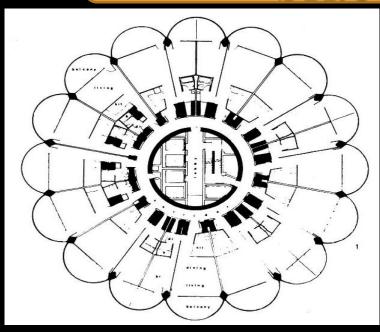
- 1. Porte RE;
- 2. Pareti REI
- 3. Filtro prova di fumo
- 4. Canna shunt

SCALA PROTETTA/A PROVA DI FUMO

Scala protetta

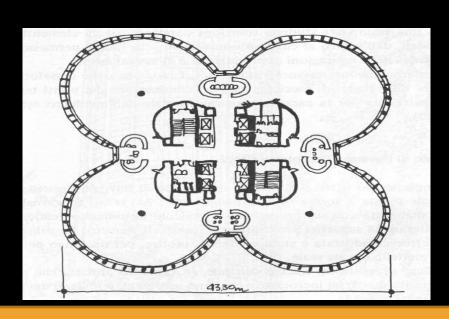
Scala in vano costituente compartimento antincendio avente accesso diretto da ogni piano, con porte di resistenza al fuoco REI predeterminata e dotate di congegno di autochiusura.

- 1. Porta RE
- 2. Pareti REI


Per approfondire la tematica consultare: F. Fascia, R. Iovino La prevenzione incendi in architettura. Tecnica e tecnologia, Aracne editrice, 2009

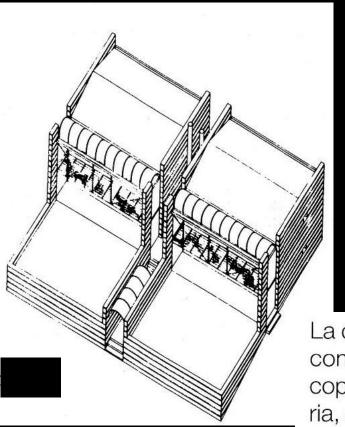
PROBLEMATICHE SPECIFICHE DELLE STRUTTURE A TORRE

^{*} vedi: F. Fascia, R. Iovino – La struttura in c.a. per l'architettura. Tecnica e tecnologia, Aracne Editrice, 2008


ORGANIZZAZIONE DELLA STRUTTURA

Struttura in c.a. dell'edificio del complesso residenziale sito in Marina City, Chicago

ORGANIZZAZIONE DELLA STRUTTURA



Struttura tube-in-tube (edificio BMW di Monaco)

Il nucleo centrale, in c.a., è realizzato in opera e resiste alle azioni orizzontali (sisma); la struttura in acciaio delle facciate, prefabbricata in stabilimento, resiste ai carichi verticali.

STRUTTURE DUPLEX

Tipo di edificio:

Casa doppia isolata, 2 piani, esposizione N/S

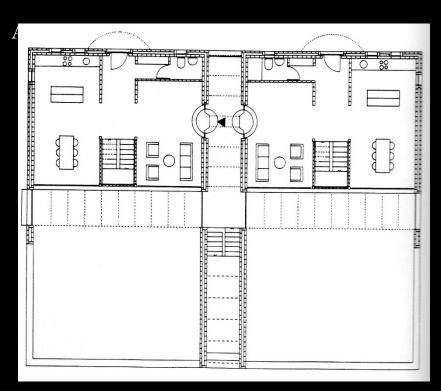
Data di costruzione:

1989-1990

Finanziamento:

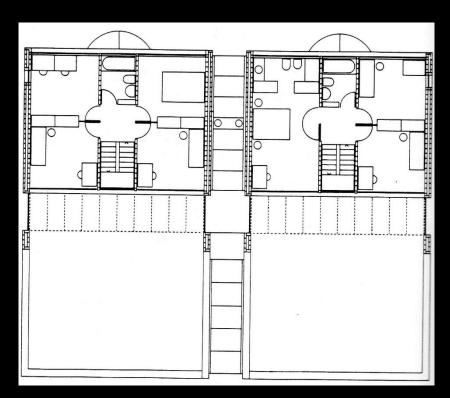
Privato

Superficie abitabile:


5 stanze, 129 m² (più l'interrato a piano intero)

Costruzione:

Due case unifamiliari su terreno in per e con un passaggio centrale


La costruzione consiste di due case unifamiliari con un passaggio tra l'una e l'altra provvisto di copertura a volta in materiale translucido. In teoria, questo progetto può essere esteso senza limiti a formare un complesso di case unifamiliari strettamente raccolte.

STRUTTURE DUPLEX

PIANO TERRA

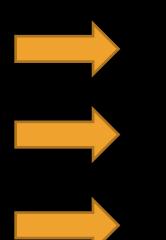
perpendicolari. La disposizione interna è semplice e sobria: un ampio locale al pianterreno con cucina e piano ribaltabile sul lato nord; al piano superiore quattro stanze identiche da nord a sud con un bagno in mezzo. L'ingresso è da nord, il

PIANO PRIMO

pozzo delle scale dà a sud. I muri doppi sui lati nord, est e sud e gli interrati a piano intero aumentano notevolmente il risparmio energetico.

STRUTTURE UNIFAMILIARI

PROBLEMATICHE SPECIFICHE

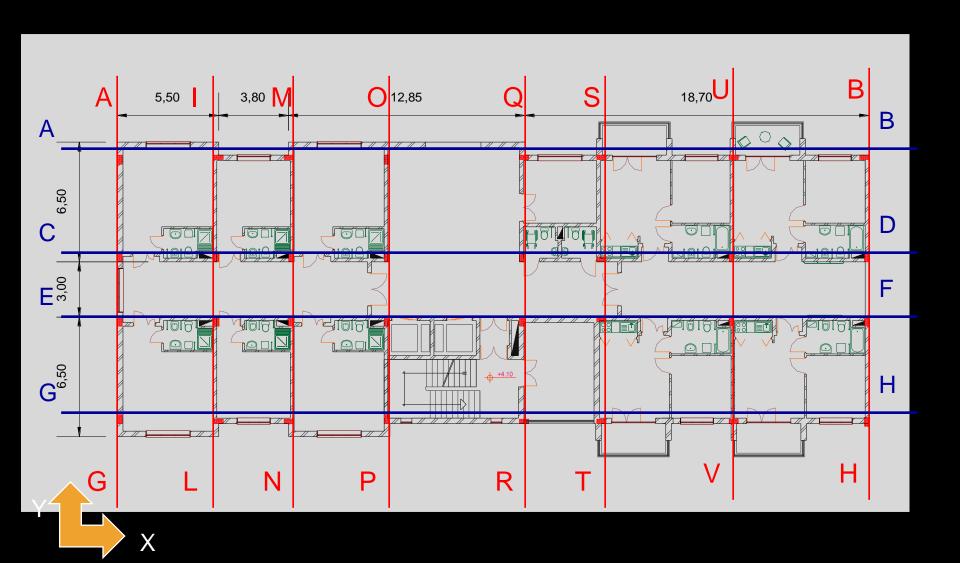


FASI PROGETTUALI

DIREZIONE DEI LAVORI

RISPARMIO ENERGETICO

ORGANIZZAZIONE DELLA STRUTTURA

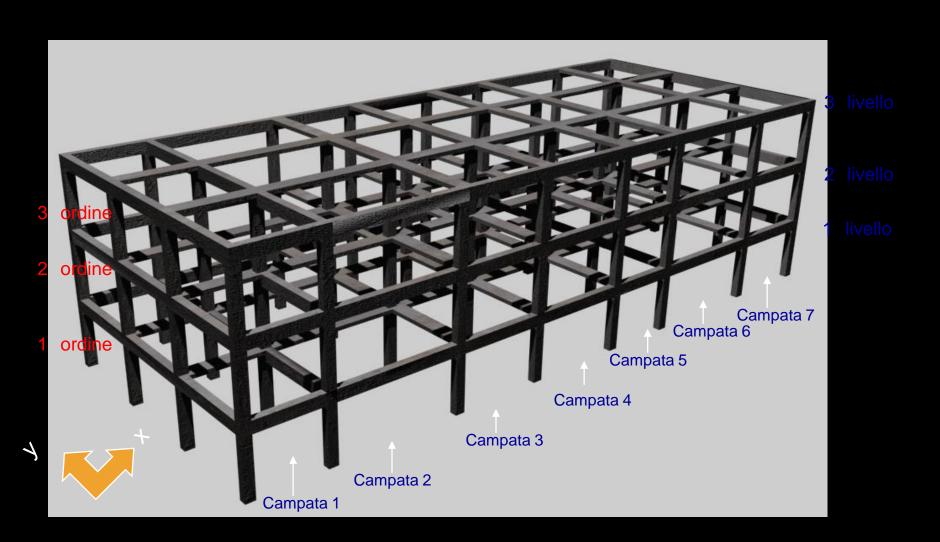


Struttura con telai disposti secondo due direzioni ortogonali


Fondazione con elementi continui a formare maglie rettangolari

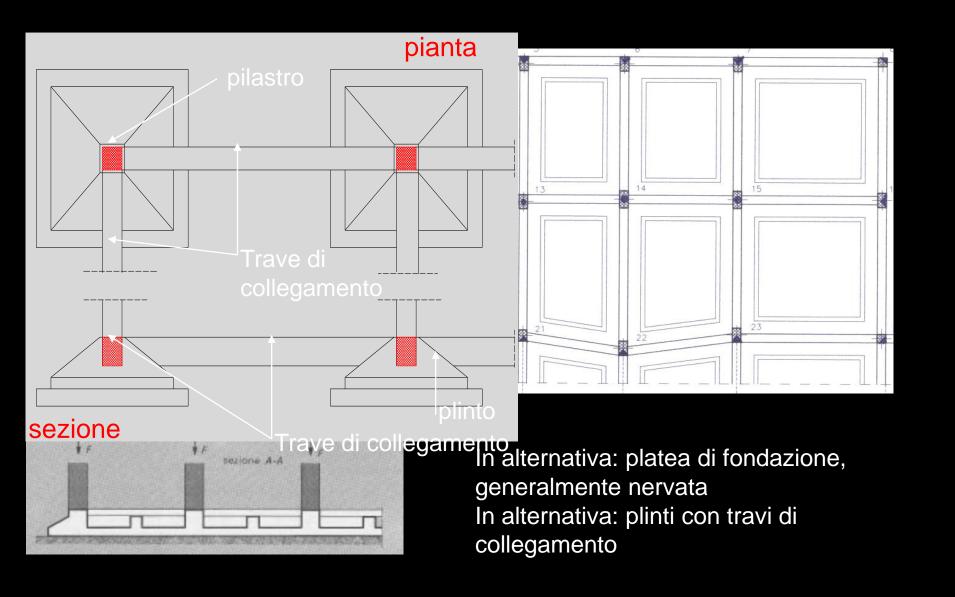
Distribuzione uniforme delle rigidezza in pianta e in alzato

Struttura con telai disposti secondo due direzioni ortogonali



Struttura con telai disposti secondo due direzioni ortogonali

Struttura con telai disposti secondo due direzioni ortogonali

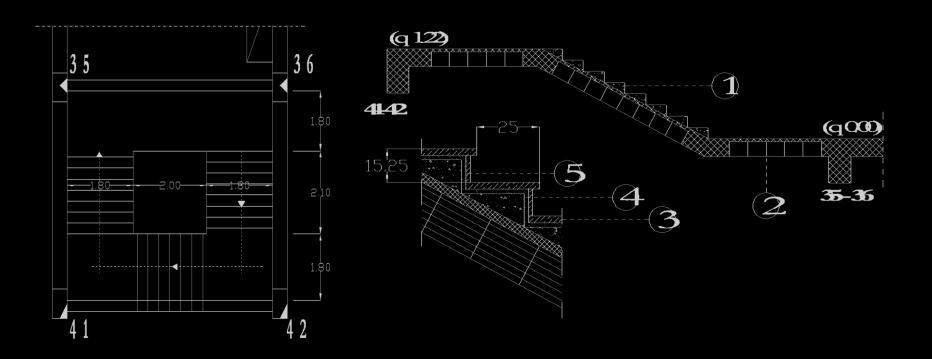


Struttura con telai disposti secondo due direzioni ortogonali

La vista dall'alto evidenzia che i telai si sviluppano secondo due direzioni ortogonali, x ed y, ed è quindi idonea ad assorbire la spinta sismica in qualsiasi direzione si propaghi.

Struttura con telai disposti secondo due direzioni ortogonali

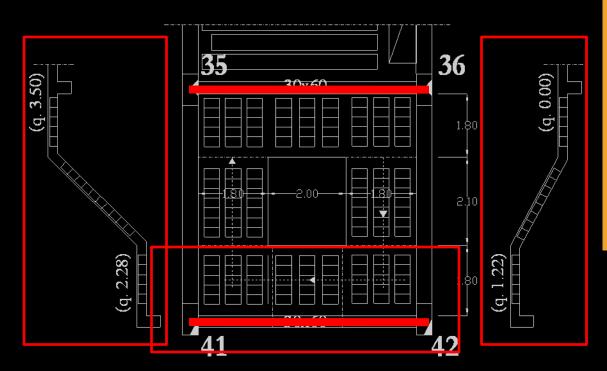
ORGANIZZAZIONE DELLA STRUTTURA


Distribuzione uniforme delle rigidezza in pianta e in alzato

Giunti sismici in pianta

Giunti sismici in alzato

Scale con struttura rampante


Scale con struttura rampante e una trave a ginocchio

Scala a tre rampe, con pedate da 25 cm ed alzate da 15,25 cm

Scale con struttura rampante e una trave a ginocchio

La struttura della scala è formata da una trave di piano (35 – 36) e da una trave a ginocchio (42 – 41). Due solai rampanti collegano le quote 0.00 e 1.22, la prima, e le quote 2.28 e 3.50, la seconda. Un solaio inclinato che collega la quota 1.22 con la quota 2.28.

Quest'ultimo solaio è incastrato nella trave a ginocchio (42 – 41). Un travetto di bordo collega il solaio a sbalzo con i due solai rampanti.

STRUTTURE UNIFAMILIARI

PROBLEMATICHE SPECIFICHE

FASI PROGETTUALI

DIREZIONE DEI LAVORI

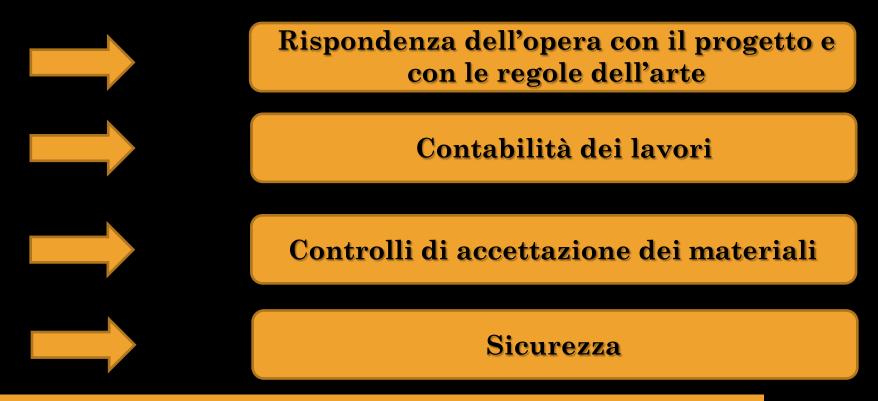
RISPARMIO ENERGETICO

FASI PROGETTUALI

Approfondire la tematica: gli elaborati progettuali, le relazioni, i costi dell'opera, gli elaborati per la sicurezza.

STRUTTURE UNIFAMILIARI

PROBLEMATICHE SPECIFICHE



FASI PROGETTUALI

DIREZIONE DEI LAVORI

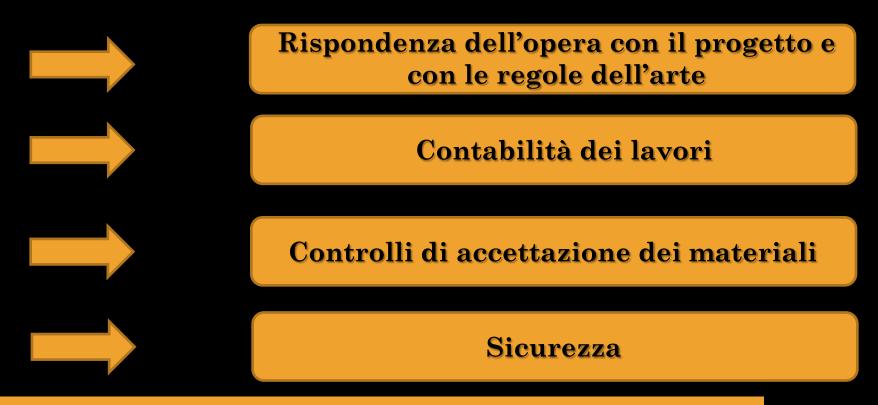
RISPARMIO ENERGETICO

DIREZIONE DEI LAVORI

Approfondire le tematiche: gli elaborati della contabilità, i controlli di accettazione del cls; figure preposte alla sicurezza.

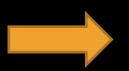
COLLAUDO

Collaudo Tecnico - amministrativo


Collaudo strutturale in corso d'opera

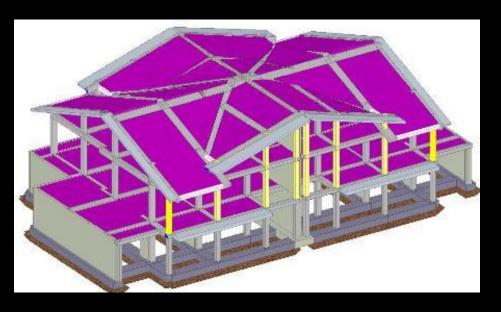
Approfondire le tematiche sulle responsabilità e sui compiti dei collaudatori statico e tecnico - amministrativo.

I TITOLI ABILITATIVI PER LA COSTRUZIONE


Approfondire le tematiche sui titoli da richiedere alle Amministrazioni per effettuare i lavori edili: manutenzione ordinaria, manutenzione straordinaria, nuove costruzioni.

DIREZIONE DEI LAVORI

Approfondire le tematiche: gli elaborati della contabilità, i controlli di accettazione del cls; figure preposte alla sicurezza.


DIREZIONE DEI LAVORI

Rispondenza dell'opera con il progetto e con le regole dell'arte

Controlli di accettazione dei materiali

Abruzzo, località Pettina. Sisma del 2009

Abruzzo, località Pettina. Sisma del 2009

Abruzzo, località Pettina. Sisma del 2009

Abruzzo, località Pettina. Sisma del 2009

Abruzzo, località Pettina. Sisma del 2009

Perché tanto degrado???

- Perché l'acciaio impiegato è scadente ?
- Perché l'impresa ha lavorato male ?
- Perché la centrale di betonaggio ha fornito un calcestruzzo di qualità scadente ?

Forse anche per tutto questo,

ma principalmente

- Perché il progettista non si è preoccupato di studiare opportunamente il mix design del calcestruzzo
- Perché il progettista non si è preoccupato di verificare il numero di tondini di acciaio presenti nelle sezioni delle travi, dei pilastri e nei nodi
- Perché il progettista non ha fissato un adeguato copriferro
- Perché il calcestruzzo del nodo pilastro-trave-pilastro non è opportunamente confinato
- Perché il direttore dei lavori ed il collaudatore in corso d'opera non hanno controllato la fase dei getti

il progettista deve garantire una <u>durabilit</u>à di 50 anni alle strutture ordinarie e di 100 anni per le opere sensibili

e, quindi, deve:

Studiare la composizione del calcestruzzo non solo in funzione della $R_{ck}\,$ ma anche in funzione della consistenza opportuna per il tipo di struttura

- S1 per le pavimentazioni in cls
- S2 per i getti massicci non armati
- per i getti scarsamente armati
- S4 / S5 per le strutture intelaiate in zona sismica

Durabilità = attitudine di un'opera a sopportare agenti aggressivi di diversa natura mantenendo inalterate le caratteristiche meccaniche e funzionali

La consistenza

Consistenza S3 slump 100 - 150 mm

Consistenza S1 slump 10 - 40 mm

Consistenza S4 slump 160 – 210 mm

Consistenza S2 slump 50 - 90 mm

Consistenza S5 slump > 220 mm

S 1	10-40	terra umida
S2	50-90	plastica
S 3	100-150	semifluida
S4	160-210	fluida
S5	> 220	superfluida

Per garantire una durabilità di 50 anni alle strutture ordinarie e di 100 anni per le opere sensibili, il progettista deve:

- Studiare la composizione del calcestruzzo in funzione delle condizioni di esposizione ambientale e degli agenti aggressivi
- Fissare il copriferro in funzione delle condizioni di esposizione ambientale
- Confinare il calcestruzzo dei nodi pilastro-trave-pilastro mediante opportuna staffatura
- Linee guida del Ministero dei Lavori Pubblici sul c.a. (1996)
- UNI 11104

Le Cause del Degrado delle strutture in c.a.

 Strutturali: Resistenze meccaniche – Azioni eccezionali – Regime dei Vincoli

II - Chimiche: Solfati - Cloruro - Anidride Carbonica

III - Fisiche: Gelo - Disgelo – Ritiro Plastico

IV - Meccaniche: Abrasione - Erosione - Urto - Esplosione

V - Biologiche: Muschi - Alghe - Funghi

II - Chimiche: Solfati – Cloruro – Anidride CarbonicaL'Anidride Carbonica

CO₂ presente nell'atmosfera, penetra nel Cls in forma gassosa e tende a neutralizzare l'ambiente alcalino, determinando la perdita delle condizioni di protezione delle armature

La reazione chimica: $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$ produce un abbassamento del valore del ph al disotto di 11 ed espone le armature, in presenza di ossigeno ed acqua, al fenomeno della corrosione diffusa - alla riduzione della sezione resistente - all'aumento di volume ed espulsione del copriferro

L'Anidride Carbonica

Il fenomeno della carbonatazione si attiva nelle zone superficiali e penetra verso l'interno con velocità che dipende dal rapporto (Acqua/Cemento), dalla porosità del Cls e dal tipo di cemento

x = K Vtk = f(A/C e tipo di cemento)

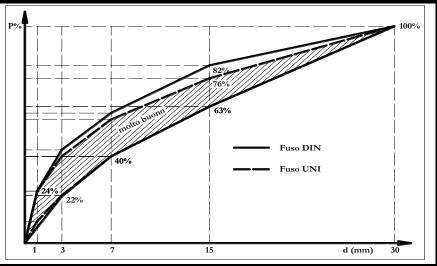
Quanto maggiore è il copriferro, maggiore sarà il la protezione dell'armatura dalla corrosione

La profondità della carbonatazione si verifica con la prova della fenolftaleina che indica, colorandoli di rosa, gli strati con ph inferiore ad 11.

Resistenza caratteristica

Le NTC 2008 definiscono le classi di resistenza in funzione dei valori di rottura dei Provini cilindrici (fck) [D=15cm – H=30cm] e dei Provini cubici (Rck) [L = 15cm] : C 25/30 : fck = 25 N/mmq – Rck = 30 N/mmq

CLASSE DI RESISTENZA C f _{ck} /R _{ck} (MPa)	TIPOLOGIA DI COSTRUZIONE					
C8/10	C444					
C12/15	Strutture non o poco armate (Fe<0.1%, § 4.1.11)					
C16/20						
C20/25	Strutture in c.a.					
C25/30						
C28/35						
C32/40						
C35/45	Strutture in c.a. e c.a.p.					
C40/50						
C45/55						
C50/60						
C55/67	Strutture in c.a. e c.a.p. con prove di prequalifica					
C60/75	su R _{ck} e altre grandezze fisico-meccaniche					
C70/85						
C88/95	Strutture in c.a. e c.a.p. con autorizzazione del Servizio Tecnico Centrale su parere del					
C90/105	Consiglio Superiore dei LL.PP.					



L'assortimento granulometrico

L'assortimento granulometrico deve essere progettato in modo da rispettare la curva ideale del Fuller (o di Bolomey, ecc.) ed essere contenuta nel Fuso UNI.

Un buon assortimento di inerti: riduce al minimo il volume dei vuoti, aumenta la resistenza meccanica, riduce la porosità, garantisce l'aderenza con le armature

Classe di esposizione ambientale

La norma UNI 11104 e le Linee Guida del Consiglio Sup.LL.PP. definiscono sei Classi di Esposizione agli agenti aggressivi:

XO Assenza di rischio

XC Corrosione da Carbonatazione

XD Corrosione da Cloruri ad esclusione di quelli di mare

XS Corrosione da Cloruri di mare

XF Degrado per gelo e disgelo

XA Degrado chimico

In funzione della classe di esposizione si determinano i valori di:

Rck (min) - Rapporto A/C (max) - Dosaggio cemento (min) - Spessore copriferro (min)

CARATTERISTICHE DELL'AMBIENTE			CARATTERISTICHE DELLA MISCELA						
			Li	inee Guid	la	ι	UNI 11104		
		m	Max	Minima	Minimo	Max	Minima	Minimo	
		CLASSE ESPOSIZIONE	rapporto	Rck		rapporto	Rck	dosaggio	
		CLASSE	A/C		CEM	A/C		C	
) NE E		N/mm²	kg/m³		N/mm²	kg/m³	
1 100									
	enza di rischio di corrosione o attacco								
ХО		X0						15,00	
2. Cor	rosione indotta da carbonatazione								
	Asciutto o permanentemente bagnato	XC1	0,60	30	280	0,60	30	300	
хс	Bagnato, raramente asciutto	XC2	0,60	30	280	0,60	30	300	
	Umidità moderata	хс3	0,55	37	300	0,55	35	320	
	Ciclicamente asciutto o bagnato	XC4	0,50	37 - 40	320	0,50	40	340	

CARATTERISTICHE DELL'AMBIENTE			CARATTERISTICHE DELLA MISCELA					
			Li	nee Guid	la	UNI 11104		
		CLASSE ESPOSIZIONE	Max rapporto A/C	Minima Rck N/mm²	Minimo dosaggio CEM kg/m³	Max rapporto A/C	Minima Rck N/mm²	Minimo dosaggio C kg/m ³
3. Cori	rosione indotta da cloruri							
	Umidità moderata	XD1	0,55	37	300	0,55	35	320
XD	Bagnato raramente asciutto	XD2	0,50	37 - 40	320	0,50	40	340
	Ciclicamente secco e bagnato	XD3	0,45	45	350	0,45	45	360

CARATTERISTICHE DELL'AMBIENTE			CARATTERISTICHE DELLA MISCELA					
			Li	inee Guid	la	Į	JNI 1110	4
		CLASSE ESPOSIZIONE	Max rapporto A/C	Minima Rck N/mm²	Minimo dosaggio CEM kg/m³	Max rapporto A/C	Minima Rck N/mm²	Minimo dosaggio C kg/m³
4. Corrosione indotta dai cloruri dell'acqua di mare								
	Esposto alla salsedine marina ma non direttamente a contatto con l'acqua di mare	XS1	0,50	37 - 40	320	0,50	40	340
XS	Permanentemente sommerso	XS2	0,45	45	350	0,45	45	360
	Zone esposte agli spruzzi oppure alla marea	XS3	0,40	45	370	0,45	45	360

CARATTERISTICHE DELL'AMBIENTE			CARATTERISTICHE DELLA MISCELA						
				Li	nee Guid	a	UNI 11104		
			CLASSE ESPOSIZIONE	Max rapporto A/C	Minima Rck N/mm²	Minimo dosaggio CEM kg/m³	Max rapporto A/C	Minima Rck N/mm²	Minimo dosaggio C kg/m ³
5. Atto	acco da cicli d	i gelo e disgelo							
	XF	Moderata saturazione Assenza di Sali disgelanti	XF1	0,55	37	300	0,50	40	320
		Moderata saturazione Presenza di Sali disgelanti	XF2	0,50	37 - 40	320	0,50	30	340
		Elevata saturazione Assenza di Sali disgelanti	XF3	0,50	37 - 40	320	0,50	30	340
		Elevata saturazione Presenza di Sali disgelanti	XF4	0,45	45	350	0,45	35	360

CARATTERISTICHE DELL'AMBIENTE			CARATTERISTICHE DELLA MISCELA							
				Li	nee Guid	da		UNI 11104		
			CLASSE ESPOSIZIONE	Max rapporto A/C	Minima Rck N/mm²		gio rapp A,	orto	Minima Rck N/mm²	Minimo dosaggio C kg/m ³
6. Att	acco chimico									
)	KA1	0,55	37	300*	0,5	5 35	320
	XA)	KA2	0,50	37 - 40	320*	0,5	0 40	340*
)	KA3	0,40	45	370*	0,4	5 45	360*

Spessore del copriferro

Classe di esposizione Carbonatazione	XC1 (mm)	XC2 XC3 (mm)		XC4 (mm)
Cls.A. ordinario	15	25	25	30
Cls.A. precompresso	25	35	35	40
Classe di esposizione XD Corrosione da Cloruri	XD1 (mm)	XD2 (mm)		XD3 (mm)
Cls.A. ordinario	45	45		45
Cls.A. precompresso	55	55		55
	VC4	V	60	VCO
Classe di esposizione XS Corrosione da Cloruri di mare	XS1 (mm)	XS2 (mm)		XS3 (mm)
Cls.A. ordinario	45	45		45
Cls.A. precompresso	55	55		55

Spessore del copriferro

Classe di esposizione XF Cicli di gelo e disgelo	XF1	XF2	XF3	XF4
Cls.A. ordinario	30	45	30	45
Cls.A. precompresso	40	55	40	55

Classe di esposizione XA Attacco Chimico	XA1	XA2	XA3
c.a. ordinario	25	25	25
Cls.A. precompresso	35	35	35

- Perché il progettista non si è preoccupato di studiare opportunamente il mix design del calcestruzzo
- Perché il progettista non si è preoccupato di verificare il numero di tondini di acciaio presenti nelle sezioni delle travi, dei pilastri e nei nodi
- Perché il progettista non ha fissato un adeguato copriferro
- Perché il calcestruzzo del nodo pilastro-trave-pilastro non è opportunamente confinato
- Perché il direttore dei lavori ed il collaudatore in corso d'opera non hanno controllato la fase dei getti

Università degli Studi di Napoli Federico II Scuola Politecnica e delle Scienze di base

Ordine degli Ingegneri della Provincia di Napoli

Seminario di preparazione all'Esame di Stato per l'Abilitazione all'esercizio della professione - Settore Civile Ambientale

Criteri progettuali degli edifici

10.11.2014 Aula Scipione Bobbio – Piazzale Tecchio, 80 Napoli

Grazie per l'attenzione e ... in bocca al lupo

Ing. Salvatore Simonetti

Phd studente Ingegneria delle Costruzioni, Università degli Studi di Napoli Federico II